TASKING SLR MEASUREMENTS TO THE GNSS SATELLITES: PATH TOWARDS THE 1MM ACCURATE AND 0.1MM/YEAR TRF FRAME

International Technical Laser Workshop on SLR Tracking of GNSS Constellations September 14-19, 2009 Metsovo, Greece

Need for SLR measurements of the GNSS Constellations

- TRF Accuracy has been deemed necessary for a great many disciplines
- Accuracy at 1 mm and 0.1 mm/year is the goal
 - Validation metric needed for this level of accuracy
- SLR TRF to be defined using LAGEOS
- Accuracy of SLR used to:
 - Constrain the TRF
 - Constrain channel effects with multiple RF frequencies
 - Diagnosis systematic behavior between GNSS transmitters and receivers
 - Monitor clock performance and 1 cpr orbit errors
 - Augment force model validation and development
 - Monitor Eclipse behavior
 - Confirm attitude assumptions
- SLR is NOT required for use in routine / operational RF derived orbit and clock products

SLR Tasking Requirements

- Tasking schedule is well agreed upon in advance
 - SLR resources are finite
 - Only a few S/C of the Constellation use in any one week
 - Measurements not coordinated with the ILRS network are of little benefit to the global solutions
- SLR Observation Spans are fixed to Engineering Goals
 - Typically 1.5 to 2 Days for Constellation Revisit Tasking
 - Tied explicitly to GPS weeks
 - Repeat at specific Beta Prime Seasons
 - Focus on specific achievable observations and comparisons and constraints to the RF products
 - Weather outages are handled via redundancy built in to plan no abnormal scheduling needed
- SLR measurements are driven by ability to achieve a Normal Point
 - Routinely achieve at Elevations above 20 degrees requested (low as practical)
 - Must not adversely impact the ILRS tasking on LEO and LAGEOS commitments
 - More frequent than one normal point per half hour is not a strong driver to global solution accuracy
- SLR sites local ties to GNSS
 - Routinely revisited with ACCURACY and Repeatability better than 1 mm
 - Observe all the future RF frequencies

Implementation

- Constellation is revisited periodically
- Each Plane (of 6 for GPS and of 3 for Galileo) is Tasked for one week
- S/C in a Plane are chosen for specific days
 - Anchor S/C is selected based on maximum night observing and local weather probability over the whole network
 - Anchor is used for first and last days with 1.5 to 2.0 day observation spans
 - Non-Adjacent s/c are selected to task remaining days with 1.5 day observation spans
 - Permits overlap as half the network is redundant with respect to one plane
 - Permits the observation of 6 s/c in one week
- Between dedicated weeks long arc single s/c observations are planned
 - Similar to today's tasking of GPS 35/36, Glonass (only 3 of many) and the Several Week campaigns on GVA and GVB
 - Driven by measurement data needed (ie. clock characterization needs at least 10 days of obs)

GNSS Documentation Provided to ILRS and Analysts

- Documentation for each Retroreflector equipped S/C
 - SLR tray center of mass to the Optical Phase Center Model as a function of Incident Angle
 - SLR Tray center of mass to S/C center of mass
 - RF phase centers to S/C center of mass
 - Retroreflector optical coatings are known

Scheduling Goals: Short and Long Observations

- Short Observation Span Goals
 - Less than 2 day duration
 - Validation of within a Plane at same Beta Prime
 - Choose same geometry for each member of the plane
 - Validation of RF transmitter location
 - May require intra plane tasking
 - Validation of Clock performance across members of constellation
 - RF Channel Effects
 - Direct measurements may require observations denser than 0.5 hr
 - Validation across Planes
 - Revisit the SLR network geometry the same
 - Exploit different Beta Prime orbits at same epoch

- Multi-Week Observation Span Goals
 - Long (>7 day) duration requires coordinated scheduling
 - Clock characterization
 - Non Conservative Force Model Tuning
 - Eclipse Monitoring
 - SLR raw data desirable

Intensive Tracking: Regional Model Validation

- Regional Model Validation using intensive regional tracking is likely unnecessary
 - Benefits:
 - Revisit all S/C in constellation possible use for ionospheric mapping?
 - Achieves Closure on all models
 - Tradeoffs:
 - Difficult to coordinate with other satellite taskings
 - Combination with other datasets will give similar results
 - Impacts resource commitments
 - Recommendation: Follow short duration tasking and multiweek tasking as stated on previous chart

Sample ILRS GNSS Ranging Schedule:

Six plane constellation example

Week in Solar Season

Week	Week	Week	Week	Week	Week	Week	Week
1-6	7-13	14-19	20-26	27-32	33-39	40-45	46-52
GNSS SLR		GNSS SLR		GNSS SLR		GNSS SLR	

		<u>Day 1</u>	<u>Day</u>	<u>2</u>	Day 3		Day 4		<u>Day 5</u>		Day 6		<u>Day 7</u>
Week 1	Plane 1	P1SV:	ISV1		5V2	P19	SV3	P1SV4		P1SV5		P1SV1	
Week 2	Plane 2	P2SV:	P2SV1		P2SV2		SV3 P2		5V4	P2SV5		P2SV1	
Week 3	Plane 3	P3SV:	/1 P		5V2	P3SV3		P3SV4		P3SV5		P3SV1	
Week 4	Plane 4	P4SV:	1 P4:		5V2	P4SV3		P4SV4		P4SV5		P4SV1	
Week 5	Plane 5	P5SV:	1	P59	5V2	P59	SV3	P59	P5SV4		SV5		P5SV1
Week 6	Plane 6	P6SV:	1	P69	5V2	P69	P6SV3		P6SV4 P6		SV5		P6SV1

Note: SV1 for each plane is chosen by optimizing the weekly schedule for the SV with the most nighttime availability

Analysis Drives Schedule

- GPS repeat Ground Track induces systematics in the SLR site overflights
 - Requires sampling across multiple planes to confirm no trends / biases
 - Minimum of 2/3 of planes in constellation
 - Day and Night ranging required to sample various beta prime seasons for a plane
 - Intra Plane validation:
 - Requires a minimum of 2 s/c in a <u>balanced</u> constellation
 - Temporal sampling may require more than 2 per plane real constellations are not balanced
 - Recommend minimum of 4 s/c per plane in a realistic, <u>unbalanced</u> constellation
- Asymmetric ground network can bias collection on suborbit basis
 - Susceptible to the GPS repeat ground track
- Galileo ground track varies and longer fit span needed to constrain cross track component

Additional Thoughts

- Retroreflector array will provide greater response to current GPS satellites.
 - Current consideration is same design as ETS-VIII, performing nominally
 - ETS-VIII at GEOStationary orbit, ~36,000 km orbit
 - GPS significantly lower, thus greater response.
 - Other solutions being considered.
- Constellation will be populated over a period of years
 - To achieve most benefit, need to get retroreflectorequipped S/C launched in early part of constellation population
 - High likelihood that constellation will not be symmetric (implementation unlikely to adhere to baseline)